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Functions vs. distributions

m Classical perspective

f(x)
f(zo) Signal as a function f : R - R, x — f(x)
M( . Distributional perspective f:S=R, o flp)
[
Physical measurement: (f, @) = / f@e(x)de €R
| el > R

Signal seen through a family of linear sensors f : p; — f(p;) = (f, i)

(f,a101 4+ agp2) = a1 (f, 1) + a2(f, ¢2)

b Continuity of the measurements with respect to variations in ¢;:
Laurent Schwartz, Fields Medal 1950 lim; o; = ¢ = lm;(f, v;) = (f,lim; p;) = (f, )
m Notion of weak equality

f=9 & (f,o)={(g.9) foral ¢eSRY
“If it looks like a duck, swims like a duck, and quacks like a duck, then it is (weakly) a duck”
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2. TOPOLOGICAL VECTOR SPACES

- Norms and semi-norms

- Cauchy/converging sequences

- Normed/Banach spaces

- Schwartz’ space of test functions
- Linear operators
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Vector space: algebraic structure

A vector space is a set of elements (vectors) that can be added and multiplied by arbitrary scalars.

af+pge X foral f,ge Xanda, 5 € R (or C)

Addition and scalar multiplication satisfy the usual rules of commutativity, associativity,
and distributivity.

The elements of a vector space are functions f : E — R (or C)
defined on a common index set E. Depending on the nature of E, these can be:

= Vectors (E = {1,...,N}) often denoted by £ = (f1,--- , fn)

Discrete signals (with E = Z) denoted by f[k] or f[]

Digital images (with E = Z?) denoted by f[k] = f[k1, k2] or f[]

Analog signals (with E = R) denoted by f(¢) or f(-)

= Continuous-domain images (with E = R?) denoted by f(z) = f(z1,z2) or f(-)
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Topological structure: norms and semi-norms

feRrY
fi fa fn
AERRRN

The topology of a vector space specifies the neighborhood(s) of a point; it is a component that allows
one to assess the proximity of points and to define a corresponding notion of convergence (continuity).

The topology of the primary vector spaces (Hilbert and Banach) is specified by a norm.

Definition

A semi-norm on the vector space X isamap || - || : X — R™ satisfying
N sl = lal [I£1] (Homogeneity)
2) I[f +all <1+ llgll (Triangle inequality)

forall f,g € X and a € R (or C). If, in addition, it holds that

A If—-gl=0« f=g (Ability to separate points)
then || - || is called a norm.
m Examples for X = RY with x = (zy,...,7x)
= Euclidean (or £2) norm: |[|x[l2 = /23 + -+ + 2%
= Absolute (or ¢1) norm:  ||x||1 = |z1| + -+ + |zN]
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Comparison of topologies

x=(0,1) and y=(J5, %) vx € RY, |x[l2 < [Ix[h
[x[lo = llyll2 =1 10¢ 104
05 05+
H 8
-1.0 -05 \/ 05 1.0 -1.0 -05 05 1.0
-05+ ~0-5;
Ixlli =1 and [ly[: = v2
“10F 1.0
{5 (or Euclidean) norm £y norm
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m Example of Cauchy (converging) sequence in R?

(Zn)nen With z,, € R2and x,, — 0 asn — oo

10

05}

-1.0 -05 05 1.0

05|

m Assessment of continuity

lim, f(z,) = f(lim, z,) = f(x) with z,, - x asn — oo



Cauchy and converging sequences

Normed space: vector space X equipped with a norm, which is denoted by (X, || - ||).
Definition
Let X = (X, || - ||) be a normed vector space.

A sequence (z,,) = (zn)nen in X converges to a limit x € X’ if
Ve > 0,3N, € Nsuch that ||z — || < eforalln > N,

One then writes x,, — x or x = lim x,,.
n
Likewise, (z,,) is a Cauchy sequence in X’ if

1)z, e Xforalln e N

2) Ve > 0,3N, € Nsuch that ||z, — z,|| < eforallm,n > N..

= The limits of converging and Cauchy sequences are unique
» If (z,,) converges in X, then it is necessarilly a Cauchy sequence

= If (z,,) converges or is Cauchy in X', then it is bounded in the sense that sup,, ||z, < oo

= The notion of Cauchy (resp., of a converging) sequence also exists for more general topologies;
e.g., for a Fréchet space, which is equipped with a countable family of semi-norms.
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Normed/Banach spaces

Topological vector space (TVS): a vector space equipped with a topology (e.g, the normed space (&X', ||-||))-

Definition
A TVS X is (sequentially) complete if the limit points of all Cauchy sequences (z,) in X are
included in X.

Important case: Banach space = complete normed space.

m Properties

= Every finite-dimensional normed vector space is complete

= Every normed space (X, | - ||) has a unique (Banach) completion, which is denoted by
(@ 11D
(In essence, this amounts to augmenting X’ by adding the limit points of all Cauchy sequences

to it.) Another way to putit: (X, || - ||) is isometrically and densely embedded in (X, || - ||)-
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Some useful Banach spaces for engineers

m Finite-dimensional vector spaces

N 1/p
(RN, || - ||,,) with [|x]|, = (Z |:cn|p> is a Banach space for p = 1, 2.

n=1

m Function spaces

Space of continuous functions equipped with the sup norm: || f||sup = sup;cr | f(t)]

Ch(R) = {f continuous R — R : || f|[sup < o0} is @ Banach space.

Lebesgue spaces (under implicit assumption of measurability):
1/p
ymorm: |, 2 ([ 17 1ar)
R

Ly(R)={f:R— Rst | f]L, < oo} isaBanach space for p € [1,00).
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Schwartz’ functions

Motivation

1

Schwartz’s functions (a.k.a. test functions) are extremely well-behaved so that you can manipulate them without
further precaution: differentiation, multiplication by polynomials, integrations, and more are always valid.

Definition: A function ¢ : R — R is in Schwartz’ class (i.e., ¢ € S(R)) if
=  is infinitely differentiable (smoothness)

= for all m, n € N, there exists some constant C,,, ,, such that

VteR: [D™{g}(t)] <C

1
o ———— rapid deca
T (rap y)

m Examples

The standardized Gaussian go(t) = \/%e—lff/? € S(R)
and, more generally, the Hermite functions g,,(¢) = D"{go}(¢) for n € N.
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m _ d™t
D™ = dtm
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Gauss-Hermite functions

Hermite functions: g,,(t) = D"{go }(t) for n € N where g is the standardized Gaussian

= go(t) = ——et1*/2

¥

. gi(t) = =t o—t]?/2

w go(t) = eIt/ yd
g3(t) = 3t—t3e—|t|2/2 / [

oV A
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Schwartz’ space of test functions

S(R) is a Fréchet space = a complete TVS equipped with a countable family of semi-norms

m S(R): Schwartz’ space of smooth and rapidly decreasing functions

Separating family of semi-norms: |[||m,n = sup [t"D"{@}(t)| forallm,n € N.
teR

Super strict notion of convergence: limy, = ¢ < lim|g; — @llmn =0,Ym,n e N

S(R) = {¢: R — R (or C) suchthat ||¢|m,, < co,Vm,n € N}

Why should we care about S = S(R) ?

= Classical interpretation of functions. Convergence in S conforms with our perception of what a strict equality
lim; f; = ¢ should be: the functions on either side as well as all their derivatives match at every location ¢ € R.

= S is small and yet large enough to represent any signal with an arbitrary degree of precision. .

= S is dense in most of the classical function spaces of analysis.

In particular, L1 (R) = (S(R), || - ||z,) and La(R) = (S(R), || - [l z,)- is huge!
= S work beautifully with the Fourier transform: F bijectively maps S (complex version) into itself.
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Linear operators: continuity property

Definition
An operator A : X — ), where X and ), are vector spaces is linear if, for any 1,2 € X and
ai,as € R (or C),

A{arp1 + apa} = a1 A{p1} + asA{pa}

Definition

Let X', ) be topological vector spaces. An operator A : X — ) is (sequentially) continuous (with
respect to the topologies of X and ) if, for any convergent sequence (y;) in X with limit ¢ € X,
the sequence (A{y;}) converges to A{p}inY;ie.,

Example: The linear operator D™ is continuous S(R) — S(R).

Schwartz' semi-norms: ||| m.n = sup |[t"D"{p}(t)| with m,n € N
teR

D™ { @i} =D"{p}Hlmn = D" {pi = }HImn = P £ DT {0 — o} ()] = [l @i = Pllmmamo — O
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Examples of continuous operators on S(R)
Y, ¢ € S(R) and ng,mg € N
m n,-fold derivative D™ : S(RY) — S(R?)

D {p}(t) = grelt) € S®)

m Multiplication by a monomial of degree my, M,,, : S(R) — S(R)

Moo {0} (t) = t00(t) € S(R)

m Shiftby ¢y, S;, : S(R) — S(R)

Sto{p}(t) = p(t —to) € S(R)

m Fourier transform F : S(R?) — S(RY)

Flohw) = / e (1) dt = G(w) € S(R)
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Different notions of equality for functions

m Classical equality (strict)
f(t)=g(@), VteR
Context: Functions should be continuous.

4

m Eguality in the norm (or “almost everywhere”)

+oo
||f—g\|2:[ F6) —g)Pdt=0 &  f=g a

Context: Finite-energie functions, measure theory (Lebesgue, 1901)

Y

m Weak equality (or “in the sense of distributions”)
VoeS, (f ¢)=1{g,) =3 f =g (inthe sense of distributions)
)
- Notation for "duality product™ (f, ¢) = / ft)e(t)dt

- §8: Schwartz’s space of “test” functions (smooth with rapid decay)

- Context: Generalized fonctions, distribution theory (Schwartz, 1950)
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Cy(R)
or S(R)
(if one cares about derivatives)

L2 (R) and L1 (R)

p(R) = (SR), [ l|z,), p=1,2

o S'(R) (space of distributions)
with S(R) C L,(R) C S'(R)

Aljeiauab jo aaibap
£
2

<
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3. LINEAR FUNCTIONALS AND DUAL SPACE

- Linear functionals

- Continuous dual of a vector space
- Finite-dimensional scenario

- Adjoint operator

M. Unser — EPFL
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Linear functionals

Context: X is a complete topological vector space with some associated notion of sequential con-
vergence; that is, if (¢;).cn is @ Cauchy sequence in X, then lim; o ; = p € X.

Definition

= A functional on a TVS X is a mapping ¢ — f () that associates the real value f(y) to any
element ¢ € X.

= The functional f : X — Ris linear if

f(CngOl + a2 (,02) = alf(gol) + agf(ngg) for all Y1, P2 € X and ay,as € R (or (C)

= The functional f : X — R is continuous if lim; f(y;) = f(lim; ¢;) = f(¢) for any converg-
ing sequence (p;) in X.

Proposition

A linear functional f : X — R, p — f(¢) = (f, ) is continuous if and only if it is continuous at
the origin where it takes the value 0.

lim; f(p:) = f(lim; i) = f(p) & lim; f(pi —¢) = f(0) =0 (by linearity)
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Continuous dual of a vector space

Context: X is a complete topological vector space with some associated notion of sequential con-
vergence; that is, if (¢;);cn is @ Cauchy sequence in X, then lim; o, ¢; = p € X.

Notation for a linear functionalon X. f: ¢ — (f,¢) with (f,¢) € R

Observation: The set of all linear functionals on X is a vector space denoted by X'* (algebraic dual)
(a1f1 + a2 fa, ) = ar(f1, ) + a2(f2,0),  Var,a2 €R

Likewise: | The set of all continuous linear functionals on X is a vector space X’/ C X*

X’ topological or continuous dual of X

Scalar (or duality) product (-, -) is a bilinear functional: X x X’ — R continuous in both arguments

m Weak-* topology on X’:  (f;) convergesto fin X’
& limi(fi,0) = (f.p) forallp € X

M. Unser — EPFL
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Most basic example: (R, | - |)’, which is isomorphic to (R, |- |)

m X = R as a complete normed vector space

= Algebraic structure: aiz1 + asxo € R forall x1,20 € X and a1,a2 € R

» Norm: z — |z]

(the choice here is unique) 0

= Completeness: R is complete;
i.e., all Cauchy sequences in R have a limit in R.

m The linear functionalon X = R /“i

= They are all of the form f; : z — a;x with a; € R

= They are automatically continuous in the topology of R.

= Each of them is uniquely identified by an element of R: o; = f;(1) = D f;(0) € R

=
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(R,]|-|)" isisomorphicto (R,|-|) (often written as R’ = R)

Finite-dimensional scenario

m |dentification of linear functionals on X = RY

f(x) : RY — Ris a linear functional on RY Vx,x1,%2 € RV and Vay,ay € R

& flaixy + agxa) = a1 f(x1) + az f(x2)

Association between f : RY — R

& f(x) =fTx = (f,x) for some f € RY and f = (f,) € RY is one-to-one with f,, = f(e,)

or, alternatively, f = V f(0) (slope)

m Topological consideration for ¥ = (RY || - ||») (Euclidean space)

Continuity:

[F(xi) = F(x5)| = [ (xi =) = [(£, % =x;)| < [[f]|2 [[xi =x;]la (Cauchy-Schwarz)

Proposition

The set of all continuous linear functionals on R¥ is a vector space (R" )" isomorphic to RYY

(a1f1 + aofs, x) = a1 (f1,x) + az(fe, x)

M. Unser — EPFL
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Adjoint operator
Let X be a complete topological vector space with continuous dual X”.

Duality pairing:  (f, @) — (f, @) xrxx = (f. ) (for short

m Adjoint of a linear operator A : X — X

Theorem

If A is a continuous linear operator on X', then there exists a unique continuous linear operator
A* . X’ — X’ (the adjoint of A) such that, for all (f, ) € X’ x X,

(f; Meh) = (A™{f}, ) -

m Finite-dimensional scenario : X = (RY || - [|2)

A:x+— Ax with A € RVxN
A*:y— ATy (transpose)

Indeed, ¥x,y € RV : (y, Ax) = y"Ax = (ATy)"x = (ATy,x)
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4. DISTRIBUTIONS

- Mathematical notion of distribution

- Examples of distributions

- Schwartz space of tempered distrubutions
- Operations on distributions

- Examples of calculations

- Conclusion
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What is a distribution (a.k.a. generalized function)?

It is a continuous linear functional on S(R)

f € 8'(R): Schwartz’ space of tempered distributions

Iltis a rule S(R?) — R that associates a real number (¢, f) to every test function

Example: (§(- — to), ¢) = ¢(to)

It is an extension of the classical notion of function.

If f is (slowly increasing and) locally integrable, then (¢, f) = / F(@®)p(t)dt
R

Otherwise, when f cannot be identified as a function, the “integral” notation / F(®)e(t)dt = (f, @) is only formal
R

Example: / p(t)d(t — to)dt = ¢(tp) (sampling property of Dirac)
R
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Examples of distributions

Specification of a distribution f : ¢ — (f, ©)

Properties to check
1. Linearity: <f, a1p1 + a24p2> = ax <f, (pl> —+ a2<f, g02> for all ai,a € R and ©v1,P2 € S

2. Continuity: lim;(f, ;) = {f,lim; ;) = 0 for any sequence (¢;) in S that converges to 0.

N.B.: ¢; — 0in S is equivalent to ||;|m.n = sup;cg |t D {p;}(t)| — O forallm,n € N

m Shifted Dirac impulse m Absolutely-integrable function
5 — 1) s @ > (8(- — ). 0) £ olto) from (h) 2 [ Fpwdr win [ 170l = 17l < o0
Linearity: obvious Linearity: obvious
Continuity: [(3(- —t0), ¢)| < [[#llo,0 Continuity: [(f, ©)| < [|f]lL. [[¢llo.0

m Functions with no-faster-than-algebraic growth

S such [ FOI(1+ )"t = [l -mg < o6
R
Continuity: (£, £ < CIf 2, o llpllmpo

M. Unser — EPFL
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Schwartz’ space S’'(R) of tempered distributions

S'(R) is the topological dual of S(R), which is itself a nuclear* Fréchet space.
This implies that S’(R) is also a nuclear space, which fully justifies the use of the weak topology.

*: A nuclear space is a TVS with the remarkable property that strong and weak=weak-* convergence are equivalent.

m Convergence in §'(R)

S’ = S'(R) equipped with the weak topology is complete.
A sequence (f,) = (fn)nen of distributions in S’ converges to a limit f € S’ if

VoeS: (frrp) = (lim_fr,0) = (f, )

lim
n—oo
m Example

Let f : R — R be a continuous function such that || f||, < oco.

Then, f,(t) = Z f(E)s(t — £)L converges to f in " as n — oco.

k=—n?2
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Further examples of weak convergence

Convergence in the sense of distributions:  lim f, = f inS & Ve e S: lim (fu,¢) = (f,¢)
n—oo n—r oo

m Construction of Dirac impulse
The functions f,,(t) = n rect(nt) converge to 6 in S’ as n — oo.

= Unit integral: / fo(t)=1foralln e N
R 1

1
. . RN N
= lim (f,,0) = lim an(t)w(t)dt/: Jim ;w(n)dT—/l Jim o (5) dr = ¢(0)
t=3 ©(0)

The argument caries through for any g : R — R that is continuous at t = 0 with ng(t)dt =1.

Remark: While f,, € L1 (R) with || f||z, = 1 foralln € N, lim,,_,o fn = J ¢ L1(R) because
(fn) fails to be a Cauchy sequence in L (R). In other words, § cannot be identified as a function.

M. Unser — EPFL
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Operations on distributions

Dual extension principle

Let U, U* : S(R) — S(R) be two operators that form an adjoint pair on S(R) x S(R).
Their action to S’(R) — S’(R) is extended by defining U{f} and U*{f} such that
(U{r}, o) = (£, U {e}),
(U{f},0,) = (£, U{e}).

m Examples of definition of operations on distributions
= Shiftby to € R:  (f(- —t0), ) = (f, (- + t0))
= nth-order derivative:  (D"{f}, ) = (—1)"(f,D"{e})
= Multiplication by monomial: (M, {f}, ) 2 (f, M, {}) 2 (f, (-)™0p)
= Convolution:  (hx f, ) 2 (f,hY @) with he S(R) and kY (t) = h(—t)

= Fourier transform:  (F{f}, ) = (f, F*{¢}) = 2x(f,¢) forall ¢ c S(R)
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Justification: Continuity and adjoint relations on S(R)
Y, ¢ € S(R) and ng,mg € N
m no-fold derivative D™ : S(RY) — S(R?)

D" {g}(t) = Srge(t) € S(R)

Adjoint relation: (D"0)* = (—1)"™D"; i.e., (D™ {p},¢) = (=1)"{p,D"{p}) (integration by part)

m Multiplication by a monomial of degree my € N, M,,, : S(R) — S(R)
M, {0} (t) = t"0(t) € S(R)

Adjoint relation: M, =My, < (M, {¢}, ) = (o, Mm,{¢})

m Fourier transform F : S(R?) — S(RY)
Flehw) = [ (1) dt = p(w) € S®)
R

Adjoint relation 7* = (2m)F ! (Parseval) with 7! : S(R) — S(R)
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Examples of calculations

m Differentiation:  (D{f}, ) = —(f,D{¢}) forall ¢ € S(R)
= (0, 0) = —(0,D{p}) = —¢'(0)
« D{u} = 4. .
indeed: (D{u}. ) = —(u.D{e}) = = [ ¢ (Bt = 9(0) = plox) = 4(0)

m Convolutionwith h € St (f x h,p) = (f,hY % ¢) forall ¢ € S(R)
mdxh=~h
Vp € S: (6% h,p) = (d,h" xp) = hY xp(0) = (h, p)

& xh=D{h} =MW
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Conclusion: Advantages of working with S’(R)
m Direct analogy with linear algebra

= Fundamental elements (not included in Lo (R) = classical Hilbert space):
(i) 8(- —to) € S'(R) (continuous-domain analog of canonical basis),
(iy e7dwo- € S'(R)  (eigenfunctions of LS| operators)

= Schwartz’ kernel theorem:

Every linear operator is characterized by its generalized impulse response (analog of bi-infinite matrix)

m Rigorous extensions of basic signal processing operators

= Weak derivative(s), which may produce Dirac impulses
= Generalized Fourier transform, which may not have an explicit representation as a “classical Fourier integral”
= Multiplication with smooth, slowly-increasing functions (e.g. modulation, multiplication with monomial)

(These operations are not necessarily valid in the classical sense for ordinary (e.g. piecewise continuous)
functions f : R — R)

m Largest mathematical framework that supports use of the Fourier transform
s F: 8 (R) — S'(R) (continuous bijection)

= Distributional calculus is self-consistent (“tous les coups, ou presque, sont permis”)
Liberal use of properties in Tables (without worrying about underlying mathematical hypotheses).

M. Unser — EPFL 32



Summary: infinite-dimensional extension of linear algebra

Vector algebra

X = (x17"' ,.Z'N)
N

(X,¥) = Tnyn
n=1

e,, (canonical basis)

y = Ax

Transpose of a matrix: AT
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Functional counterpart

f(t)
(f, ) :/f(t)go(t)dt (duality product)

Shifts of the Dirac distribution: d(- — 7) € S’(R)

A{F} (1) = / alt, 7)f(t)dr

R

Adjoint operator: A*{f}(t) = / a(t,t)f(t)dr
R
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