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Functions vs. distributions
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x0
x

f(x)
f(x0)

“If it looks like a duck, swims like a duck, and quacks like a duck, then it is (weakly) a duck”

Signal seen through a family of linear sensors f : 'i 7! f('i) = hf,'ii

hf, a1'1 + a2'2i = a1hf,'1i+ a2hf,'2i

Notion of weak equality

f = g , hf,'i = hg,'i for all ' 2 S(Rd)

Continuity of the measurements with respect to variations in 'i:

limi 'i = ' ) limihf,'ii = hf, limi 'ii = hf,'i

Distributional perspective

Physical measurement: hf,'i =
Z

R
f(x)'(x)dx 2 R

Classical perspective

Signal as a function f : R ! R, x 7! f(x)

f : S ! R, ' 7! f(')

Laurent Schwartz, Fields Medal 1950
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2. TOPOLOGICAL VECTOR SPACES
- Norms and semi-norms
- Cauchy/converging sequences
- Normed/Banach spaces
- Schwartz’ space of test functions
- Linear operators
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Vector space: algebraic structure
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f(t)

t

f1 f2

1 2 N

fN

. . .

A vector space is a set of elements (vectors) that can be added and multiplied by arbitrary scalars.

The elements of a vector space are functions f : E ! R (or C)
defined on a common index set E. Depending on the nature of E, these can be:

Vectors (E = {1, . . . , N}) often denoted by f = (f1, · · · , fN )

Discrete signals (with E = Z) denoted by f [k] or f [·]

Digital images (with E = Z2) denoted by f [k] = f [k1, k2] or f [·]

Analog signals (with E = R) denoted by f(t) or f(·)

Continuous-domain images (with E = R2) denoted by f(x) = f(x1, x2) or f(·)

f [k1, k2]

...

↵f + �g 2 X for all f, g 2 X and ↵,� 2 R (or C)

Addition and scalar multiplication satisfy the usual rules of commutativity, associativity,
and distributivity.

f 2 RN
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Topological structure: norms and semi-norms
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The topology of the primary vector spaces (Hilbert and Banach) is specified by a norm.

Examples for X = RN with x = (x1, . . . , xN)

Euclidean (or `2) norm: kxk2 =
p
x2
1 + · · ·+ x2

N

Absolute (or `1) norm: kxk1 = |x1|+ · · ·+ |xN |

Definition
A semi-norm on the vector space X is a map k · k : X ! R+

satisfying

1) k↵fk = |↵| kfk (Homogeneity)

2) kf + gk  kfk+ kgk (Triangle inequality)

for all f, g 2 X and ↵ 2 R (or C). If, in addition, it holds that

3) kf � gk = 0 , f = g (Ability to separate points)

then k · k is called a norm.

The topology of a vector space specifies the neighborhood(s) of a point; it is a component that allows
one to assess the proximity of points and to define a corresponding notion of convergence (continuity).
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Comparison of topologies
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x = (0, 1) and y = ( 1p
2
, 1p

2
)

kxk2 = kyk2 = 1

kxk1 = 1 and kyk1 =
p
2

`2 (or Euclidean) norm `1 norm

8x 2 Rd, kxk2  kxk1

Assessment of continuity

limn f(xn) = f(limn xn) = f(x) with xn ! x as n ! 1

Example of Cauchy (converging) sequence in R2

(xn)n2N with xn 2 R2 and xn ! 0 as n ! 1



M. Unser — EPFL

Cauchy and converging sequences
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Definition
Let X = (X , k · k) be a normed vector space.

A sequence (xn) = (xn)n2N in X converges to a limit x 2 X if

8✏ > 0, 9N✏ 2 N such that kx� xnk < ✏ for all n > N✏

One then writes xn ! x or x = lim
n

xn.

Likewise, (xn) is a Cauchy sequence in X if

1) xn 2 X for all n 2 N

2) 8✏ > 0, 9N✏ 2 N such that kxm � xnk < ✏ for all m,n > N✏.

The limits of converging and Cauchy sequences are unique

If (xn) converges in X , then it is necessarilly a Cauchy sequence

If (xn) converges or is Cauchy in X , then it is bounded in the sense that supn kxnk < 1

Normed space: vector space X equipped with a norm, which is denoted by (X , k · k).

The notion of Cauchy (resp., of a converging) sequence also exists for more general topologies;
e.g., for a Fréchet space, which is equipped with a countable family of semi-norms.
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Normed/Banach spaces
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Properties

Every finite-dimensional normed vector space is complete

Every normed space (X , k · k) has a unique (Banach) completion, which is denoted by
(X , k · k).
(In essence, this amounts to augmenting X by adding the limit points of all Cauchy sequences
to it.) Another way to put it: (X , k · k) is isometrically and densely embedded in (X , k · k).

Topological vector space (TVS): a vector space equipped with a topology (e.g, the normed space (X , k·k)).

Definition
A TVS X is (sequentially) complete if the limit points of all Cauchy sequences (xn) in X are
included in X .

Important case: Banach space = complete normed space.
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Some useful Banach spaces for engineers
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Finite-dimensional vector spaces

(RN , k · kp) with kxkp
M
=

 
NX

n=1

|xn|p
!1/p

is a Banach space for p = 1, 2.

Function spaces

Space of continuous functions equipped with the sup norm: kfksup
M
= supt2R |f(t)|

Cb(R) =
�
f continuous R ! R : kfksup < 1

 
is a Banach space.

Lebesgue spaces (under implicit assumption of measurability):

Lp-norm: kfkLp

M
=

✓Z

R
|f(t)|pdt

◆1/p

Lp(R) =
�
f : R ! R s.t. kfkLp < 1

 
is a Banach space for p 2 [1,1).
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Schwartz’ functions
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Motivation
Schwartz’s functions (a.k.a. test functions) are extremely well-behaved so that you can manipulate them without
further precaution: differentiation, multiplication by polynomials, integrations, and more are always valid.

Dm = dmt
dtm

Definition: A function ' : R ! R is in Schwartz’ class
�
i.e., ' 2 S(R)

�
if

' is infinitely differentiable (smoothness)

for all m,n 2 N, there exists some constant Cm,n such that

8t 2 R : |Dm{'}(t)|  Cm,n
1

1 + |t|n (rapid decay)

Examples

The standardized Gaussian g0(t) =
1p
2⇡

e�|t|2/2 2 S(R)
and, more generally, the Hermite functions gn(t) = Dn{g0}(t) for n 2 N.
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Gauss-Hermite functions
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Hermite functions: gn(t) = Dn{g0}(t) for n 2 N where g0 is the standardized Gaussian

g0(t) =
1p
2⇡

e�|t|2/2

g1(t) =
�tp
2⇡

e�|t|2/2

g2(t) =
�1+t2p

2⇡
e�|t|2/2

g3(t) =
3t�t3p

2⇡
e�|t|2/2

... 4
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Schwartz’ space of test functions
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Super strict notion of convergence: lim
i

'i = ' , lim
i

k'i � 'km,n = 0, 8m,n 2 N

Separating family of semi-norms: k'km,n = sup
t2R

��tmDn{'}(t)
�� for all m,n 2 N.

It’s dual is huge!

S(R) is a Fréchet space = a complete TVS equipped with a countable family of semi-norms

S(R): Schwartz’ space of smooth and rapidly decreasing functions

S(R) =
�
' : R ! R (or C) such that k'km,n < 1, 8m,n 2 N

 

Why should we care about S = S(R) ?

Classical interpretation of functions. Convergence in S conforms with our perception of what a strict equality
limi fi = ' should be: the functions on either side as well as all their derivatives match at every location t 2 R.

S is small and yet large enough to represent any signal with an arbitrary degree of precision.

S is dense in most of the classical function spaces of analysis.
In particular, L1(R) = (S(R), k · kL1) and L2(R) = (S(R), k · kL2).

S work beautifully with the Fourier transform: F bijectively maps S (complex version) into itself.
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Linear operators: continuity property
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Example: The linear operator Dm0 is continuous S(R) ! S(R).

Definition
An operator A : X ! Y , where X and Y , are vector spaces is linear if, for any '1,'2 2 X and
a1, a2 2 R (or C),

A{a1'1 + a2'2} = a1A{'1}+ a2A{'2}

Definition
Let X ,Y be topological vector spaces. An operator A : X ! Y is (sequentially) continuous (with
respect to the topologies of X and Y) if, for any convergent sequence ('i) in X with limit ' 2 X ,
the sequence

�
A{'i}

�
converges to A{'} in Y ; i.e.,

limi A{'i} = A{limi 'i}.

Schwartz’ semi-norms: k'km,n
M
= sup

t2R
|tmDn{'}(t)| with m,n 2 N

kDm0{'i}�Dm0{'}km,n = kDm0{'i�'}km,n = sup
t2R

|tmDn+m0{'i�'}(t)| = k'i�'km,n+m0 ! 0
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Examples of continuous operators on 
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8',� 2 S(R) and n0,m0 2 N

S(R)

n0-fold derivative Dn0 : S(Rd) ! S(Rd)

Dn0{'}(t) = dn0

dtn0
'(t) 2 S(R)

Fourier transform F : S(Rd) ! S(Rd)

F{'}(!) =
Z

R
e�j!t'(t) dt = '̂(!) 2 S(R)

Multiplication by a monomial of degree m0, Mm0 : S(R) ! S(R)

Mm0{'}(t) = tm0'(t) 2 S(R)

Shift by t0, St0 : S(R) ! S(R)

St0{'}(t) = '(t� t0) 2 S(R)
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Different notions of equality for functions
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Three forms are not equivalent ...

�

�

degree of generality

Classical equality (strict)

f(t) = g(t), 8t 2 R

Context: Functions should be continuous.

Eguality in the norm (or “almost everywhere”)

kf � gk2 =

Z +1

�1
|f(t)� g(t)|2dt = 0 , f = g a.e.

Context: Finite-energie functions, measure theory (Lebesgue, 1901)

Weak equality (or “in the sense of distributions”)

8� 2 S, hf,�i = hg,�i , f = g (in the sense of distributions)

- Notation for ”duality product”: hf,�i =
Z +1

�1
f(t)�(t) dt

- S: Schwartz’s space of “test” functions (smooth with rapid decay)

- Context: Generalized fonctions, distribution theory (Schwartz, 1950)

L2(R) and L1(R)

S 0(R) (space of distributions)

with S(R) ⇢ Lp(R) ⇢ S 0(R)

Cb(R)
or S(R)
(if one cares about derivatives)

with Lp(R) = (S(R), k · kLp), p = 1, 2
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3. LINEAR FUNCTIONALS AND DUAL SPACE
- Linear functionals
- Continuous dual of a vector space
- Finite-dimensional scenario
- Adjoint operator
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Linear functionals
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Definition

A functional on a TVS X is a mapping ' 7! f(') that associates the real value f(') to any
element ' 2 X .

The functional f : X ! R is linear if

f(a1'1 + a2 '2) = a1f('1) + a2f('2) for all '1,'2 2 X and a1, a2 2 R (or C).

The functional f : X ! R is continuous if limi f('i) = f(limi 'i) = f(') for any converg-
ing sequence ('i) in X .

Proposition
A linear functional f : X ! R,' 7! f(') = hf,'i is continuous if and only if it is continuous at
the origin where it takes the value 0.

limi f('i) = f(limi 'i) = f(') , limi f('i � ') = f(0) = 0 (by linearity)

Context: X is a complete topological vector space with some associated notion of sequential con-
vergence; that is, if ('i)i2N is a Cauchy sequence in X , then limi!1 'i = ' 2 X .
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Continuous dual of a vector space
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X 0: topological or continuous dual of X

Weak-⇤ topology on X 0:

ha1f1 + a2f2,'i = a1hf1,'i+ a2hf2,'i, 8a1, a2 2 R
Observation: The set of all linear functionals on X is a vector space denoted by X ⇤ (algebraic dual)

Likewise:

Scalar (or duality) product h·, ·i is a bilinear functional: X ⇥X 0 ! R continuous in both arguments

(fi) converges to f in X 0

, limihfi,'i = hf,'i for all ' 2 X

The set of all continuous linear functionals on X is a vector space X 0 ✓ X ⇤

Context: X is a complete topological vector space with some associated notion of sequential con-
vergence; that is, if ('i)i2N is a Cauchy sequence in X , then limi!1 'i = ' 2 X .

Notation for a linear functional on X . f : ' 7! hf,'i with hf,'i 2 R
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Most basic example:               , which is isomorphic to 
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(R, | · |)0 (R, | · |)

The linear functional on X = R

They are all of the form fi : x 7! ↵ix with ↵i 2 R

They are automatically continuous in the topology of R.

X = R as a complete normed vector space

Algebraic structure: a1x1 + a2x2 2 R for all x1, x2 2 X and a1, a2 2 R

Norm: x 7! |x| (the choice here is unique)

Completeness: R is complete;
i.e., all Cauchy sequences in R have a limit in R.

) (R, | · |)0 is isomorphic to (R, | · |) (often written as R0 = R)

-1.0

-0.5

0.5

1.0

-1.0

-0.5

0.5

1.0

Each of them is uniquely identified by an element of R: ↵i = fi(1) = Dfi(0) 2 R
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Finite-dimensional scenario
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8x,x1,x2 2 RN and 8a1, a2 2 R

Topological consideration for X = (RN , k · k2) (Euclidean space)

Continuity: |f(xi)�f(xj)| = |f(xi�xj)| = |hf ,xi�xji|  kfk2 kxi�xjk2 (Cauchy-Schwarz)

Association between f : RN ! R
and f = (fn) 2 RN is one-to-one with fn = f(en)

Identification of linear functionals on X = RN

f(x) : RN ! R is a linear functional on RN

, f(a1x1 + a2x2) = a1f(x1) + a2f(x2)

, f(x) = fTx = hf ,xi for some f 2 RN

or, alternatively, f = rf(0) (slope)

Proposition
The set of all continuous linear functionals on RN is a vector space (RN )0 isomorphic to RN

ha1f1 + a2f2,xi = a1hf1,xi+ a2hf2,xi
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Adjoint operator
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Let X be a complete topological vector space with continuous dual X 0.

Duality pairing: (f,') 7! hf,'iX 0⇥X = hf,'i (for short)

Theorem
If A is a continuous linear operator on X , then there exists a unique continuous linear operator
A⇤ : X 0 ! X 0 (the adjoint of A) such that, for all (f,') 2 X 0 ⇥ X ,

hf,A{'}i = hA⇤{f},'i .

Adjoint of a linear operator A : X ! X

Finite-dimensional scenario : X = (RN , k · k2)
A : x 7! Ax with A 2 RN⇥N

A⇤ : y 7! ATy (transpose)

Indeed, 8x,y 2 RN : hy,Axi = yTAx = (ATy)Tx = hATy,xi
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4. DISTRIBUTIONS
- Mathematical notion of distribution
- Examples of distributions
- Schwartz space of tempered distrubutions
- Operations on distributions
- Examples of calculations
- Conclusion
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What is a distribution (a.k.a. generalized function)?
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f 2 S 0(R): Schwartz’ space of tempered distributions

Example: h�(·� t0),'i = '(t0)

Example:
Z

R
'(t)�(t� t0)dt = '(t0) (sampling property of Dirac)

It is a continuous linear functional on S(R)

It is a rule S(Rd) ! R that associates a real number h', fi to every test function '

It is an extension of the classical notion of function.

If f is (slowly increasing and) locally integrable, then h', fi =
Z

R
f(t)'(t)dt

Otherwise, when f cannot be identified as a function, the “integral” notation

Z

R
f(t)'(t)dt = hf,'i is only formal
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Examples of distributions
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Specification of a distribution f : ' 7! hf,'i

Properties to check

1. Linearity: hf, a1'1 + a2'2i = a1hf,'1i+ a2hf,'2i for all a1, a2 2 R and '1,'2 2 S

2. Continuity: limihf,'ii = hf, limi 'ii = 0 for any sequence ('i) in S that converges to 0.

N.B.: 'i ! 0 in S is equivalent to k'ikm,n
M
= supt2R |tmDn{'i}(t)| ! 0 for all m,n 2 N

Functions with no-faster-than-algebraic growth

9m0 such
Z

R
|f(t)|(1 + |t|)�m0dt = kfkL1,�m0 < 1

Continuity: |hf,'i|  CkfkL1,�m0 k'km0,0

Shifted Dirac impulse

�(·� t0) : ' 7! h�(·� t0),'i
M
= '(t0)

Linearity: obvious
Continuity: |h�(·� t0),'i|  k'k0,0

Absolutely-integrable function

f : ' 7! hf,'i M
=

Z

R
f(t)'(t)dt with

Z

R
|f(t)|dt = kfkL1 < 1

Linearity: obvious
Continuity: |hf,'i|  kfkL1k'k0,0
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Schwartz’ space            of tempered distributions
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S 0(R)

Convergence in S 0(R)

Example

Let f : R ! R be a continuous function such that kfkL1 < 1.

Then, fn(t) =
n2X

k=�n2

f( kn )�(t�
k
n )

1
n converges to f in S 0 as n ! 1.

S 0 = S 0(R) equipped with the weak topology is complete.
A sequence (fn) = (fn)n2N of distributions in S 0 converges to a limit f 2 S 0 if

8' 2 S : lim
n!1

hfn,'i = h lim
n!1

fn,'i = hf,'i

⇤: A nuclear space is a TVS with the remarkable property that strong and weak=weak-* convergence are equivalent.

S 0(R) is the topological dual of S(R), which is itself a nuclear⇤ Fréchet space.
This implies that S 0(R) is also a nuclear space, which fully justifies the use of the weak topology.
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Further examples of weak convergence
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Convergence in the sense of distributions: lim
n!1

fn = f in S 0 , 8' 2 S : lim
n!1

hfn,'i = hf,'i

The argument caries through for any g : R ! R that is continuous at t = 0 with
R
R g(t)dt = 1.

Construction of Dirac impulse

The functions fn(t) = n rect
�
nt
�

converge to � in S 0 as n ! 1.

Unit integral:
Z

R
fn(t) = 1 for all n 2 N

lim
n!1

hfn,'i = lim
n!1

Z

R
fn(t)'(t)dt = lim

n!1

Z 1
2

� 1
2

'
�
⌧
n

�
d⌧ =

Z 1
2

� 1
2

lim
n!1

'
�
⌧
n

�

| {z }
'(0)

d⌧ = '(0)

t = ⌧
n

Remark: While fn 2 L1(R) with kfkL1 = 1 for all n 2 N, limn!1 fn = � /2 L1(R) because
(fn) fails to be a Cauchy sequence in L1(R). In other words, � cannot be identified as a function.
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Operations on distributions
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Examples of definition of operations on distributions

Shift by t0 2 R: hf(·� t0),'i
M
= hf,'(·+ t0)i

nth-order derivative: hDn{f},'i M
= (�1)nhf,Dn{'}i

Multiplication by monomial: hMm0{f},'i
M
= hf,Mm0{'}i

M
= hf, (·)m0'i

Convolution: hh ⇤ f,'i M
= hf, h_ ⇤ 'i with h 2 S(R) and h_(t) = h(�t)

Fourier transform: hF{f}, '̂i M
= hf,F⇤{'̂}i = 2⇡hf,'i for all '̂ 2 S(R)

Dual extension principle
Let U,U⇤ : S(R) ! S(R) be two operators that form an adjoint pair on S(R)⇥S(R).
Their action to S 0(R) ! S 0(R) is extended by defining U{f} and U⇤{f} such that

hU{f},'i = hf,U⇤{'}i,
hU⇤{f},', i = hf,U{'}i.
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Justification: Continuity and adjoint relations on 

30

8',� 2 S(R) and n0,m0 2 N

S(R)

n0-fold derivative Dn0 : S(Rd) ! S(Rd)

Dn0{'}(t) = dn0

dtn0
'(t) 2 S(R)

Adjoint relation: M⇤
m0

= Mm0 , hMm0{'},�i = h',Mm0{�}i

Fourier transform F : S(Rd) ! S(Rd)

F{'}(!) =
Z

R
e�j!t'(t) dt = '̂(!) 2 S(R)

Adjoint relation F⇤ = (2⇡)F�1 (Parseval) with F�1 : S(R) ! S(R)

Adjoint relation: (Dn0)⇤ = (�1)n0Dn0 ; i.e., hDn0{'},�i = (�1)n0h',Dn0{�}i (integration by part)

Multiplication by a monomial of degree m0 2 N, Mm0 : S(R) ! S(R)

Mm0{'}(t) = tm0'(t) 2 S(R)
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Examples of calculations
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Convolution with h 2 S: hf ⇤ h,'i M
= hf, h_ ⇤ 'i for all ' 2 S(R)

� ⇤ h = h

8' 2 S : h� ⇤ h,'i = h�, h_ ⇤ 'i = h_ ⇤ '(0) = hh,'i

�0 ⇤ h = D{h} = h0

Differentiation: hD{f},'i M
= �hf,D{'}i for all ' 2 S(R)

h�0,'i = �h�,D{'}i = �'0(0)

D{u} = �.

Indeed: hD{u},'i = �hu,D{'}i = �
Z +1

0
'0(t)dt = '(0)� '(1) = '(0)
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Conclusion: Advantages of working with
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S 0(R)

Rigorous extensions of basic signal processing operators

Weak derivative(s), which may produce Dirac impulses

Generalized Fourier transform, which may not have an explicit representation as a “classical Fourier integral”

Multiplication with smooth, slowly-increasing functions (e.g. modulation, multiplication with monomial)

(These operations are not necessarily valid in the classical sense for ordinary (e.g. piecewise continuous)
functions f : R ! R)

Direct analogy with linear algebra

Fundamental elements (not included in L2(R) = classical Hilbert space):

(i) �(·� t0) 2 S 0(R) (continuous-domain analog of canonical basis),

(ii) e�j!0· 2 S 0(R) (eigenfunctions of LSI operators)

Schwartz’ kernel theorem:

Every linear operator is characterized by its generalized impulse response (analog of bi-infinite matrix)

Largest mathematical framework that supports use of the Fourier transform

F : S 0(R) ! S 0(R) (continuous bijection)

Distributional calculus is self-consistent (“tous les coups, ou presque, sont permis”)
Liberal use of properties in Tables (without worrying about underlying mathematical hypotheses).
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Summary: infinite-dimensional extension of linear algebra

33

Functional counterpart

y = Ax

en (canonical basis)

x = (x1, · · · , xN ) f(t)

hx,yi =
NX

n=1

xnyn

Shifts of the Dirac distribution: �(·� ⌧) 2 S 0(R)

Transpose of a matrix: AT Adjoint operator: A⇤{f}(t) =
Z

R
a(⌧, t)f(t)d⌧

hf,'i =
Z

R
f(t)'(t)dt (duality product)

A{f}(t) =
Z

R
a(t, ⌧)f(t)d⌧

Vector algebra


