EPFL

Introduction to functional analysis and distribution theory

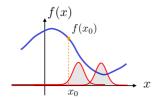
Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

Supplementary material for Signals and Systems—October 2022

TABLE OF CONTENT

- 1. Introduction
 - Functions vs. distributions
- 2. Topological vector spaces
 - Normed/Banach spaces
 - Schwartz' space of test functions
 - Linear operators
- 3. Linear functionals and topological dual
- 4. Tempered distributions

Functions vs. distributions



Laurent Schwartz, Fields Medal 1950

Classical perspective

Signal as a function $f: \mathbb{R} \to \mathbb{R}, \ x \mapsto f(x)$

■ Distributional perspective

$$f: \mathcal{S} \to \mathbb{R}, \ \varphi \mapsto f(\varphi)$$

Physical measurement: $\langle f, \pmb{\varphi} \rangle = \int_{\mathbb{R}} f(x) \pmb{\varphi}(\pmb{x}) \mathrm{d}x \in \mathbb{R}$

Signal seen through a family of **linear** sensors $f: \varphi_i \mapsto f(\varphi_i) = \langle f, \varphi_i \rangle$

$$\langle f, a_1 \varphi_1 + a_2 \varphi_2 \rangle = a_1 \langle f, \varphi_1 \rangle + a_2 \langle f, \varphi_2 \rangle$$

Continuity of the measurements with respect to variations in φ_i :

$$\lim_{i} \varphi_{i} = \varphi \quad \Rightarrow \quad \lim_{i} \langle f, \varphi_{i} \rangle = \langle f, \lim_{i} \varphi_{i} \rangle = \langle f, \varphi \rangle$$

Notion of weak equality

$$f=g \quad \Leftrightarrow \quad \langle f, {\color{red} arphi}
angle = \langle g, {\color{red} arphi}
angle \quad ext{for all} \quad {\color{red} arphi} \in \mathcal{S}(\mathbb{R}^d)$$

"If it looks like a duck, swims like a duck, and quacks like a duck, then it is (weakly) a duck"

M. Unser — EPFL

3

2. TOPOLOGICAL VECTOR SPACES

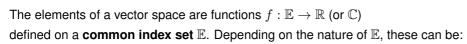
- Norms and semi-norms
- Cauchy/converging sequences
- Normed/Banach spaces
- Schwartz' space of test functions
- Linear operators

Vector space: algebraic structure

A vector space is a set of elements (vectors) that can be added and multiplied by arbitrary scalars.

$$\alpha f + \beta g \in \mathcal{X}$$
 for all $f, g \in \mathcal{X}$ and $\alpha, \beta \in \mathbb{R}$ (or \mathbb{C})

Addition and scalar multiplication satisfy the usual rules of commutativity, associativity, and distributivity.



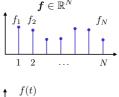


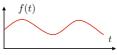
■ Discrete signals (with
$$\mathbb{E} = \mathbb{Z}$$
) denoted by $f[k]$ or $f[\cdot]$

$$lacksquare$$
 Digital images (with $\mathbb{E}=\mathbb{Z}^2$) denoted by $f[m{k}]=f[k_1,k_2]$ or $f[\cdot]$

$$lacksquare$$
 Analog signals (with $\mathbb{E}=\mathbb{R}$) denoted by $f(t)$ or $f(\cdot)$

Continuous-domain images (with
$$\mathbb{E} = \mathbb{R}^2$$
) denoted by $f(x) = f(x_1, x_2)$ or $f(\cdot)$





M. Unser - EPFL 5

Topological structure: norms and semi-norms

The topology of a vector space specifies the neighborhood(s) of a point; it is a component that allows one to assess the proximity of points and to define a corresponding notion of convergence (continuity).

The topology of the primary vector spaces (Hilbert and Banach) is specified by a norm.

Definition

A **semi-norm** on the vector space \mathcal{X} is a map $\|\cdot\|:\mathcal{X}\to\mathbb{R}^+$ satisfying

1)
$$\|\alpha f\| = |\alpha| \|f\|$$

(Homogeneity)

2)
$$||f + g|| \le ||f|| + ||g||$$

(Triangle inequality)

for all $f,g\in\mathcal{X}$ and $\alpha\in\mathbb{R}$ (or \mathbb{C}). If, in addition, it holds that

3)
$$||f - g|| = 0 \iff f = g$$

(Ability to separate points)

then $\|\cdot\|$ is called a **norm**.

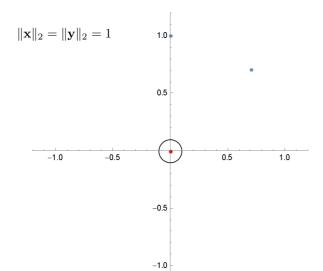
Examples for
$$\mathcal{X} = \mathbb{R}^N$$
 with $\mathbf{x} = (x_1, \dots, x_N)$

■ Euclidean (or
$$\ell_2$$
) norm: $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \cdots + x_N^2}$

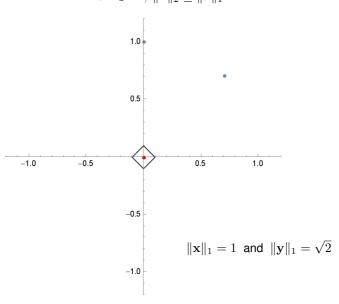
■ Absolute (or
$$\ell_1$$
) norm: $\|\mathbf{x}\|_1 = |x_1| + \cdots + |x_N|$

Comparison of topologies

$$\mathbf{x}=(0,1)\quad \text{ and }\quad \mathbf{y}=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$$



 $\forall \mathbf{x} \in \mathbb{R}^d, \ \|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1$



 ℓ_2 (or Euclidean) norm

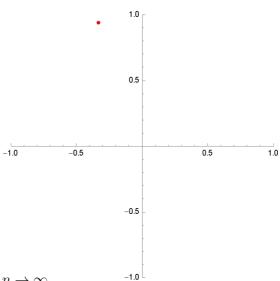
M. Unser — EPFL

 ℓ_1 norm

7

lacksquare Example of Cauchy (converging) sequence in \mathbb{R}^2

$$(oldsymbol{x}_n)_{n\in\mathbb{N}}$$
 with $oldsymbol{x}_n\in\mathbb{R}^2$ and $oldsymbol{x}_n o oldsymbol{0}$ as $n o \infty$



Assessment of continuity

$$\lim_n f(x_n) = f(\lim_n x_n) = f(x)$$
 with $x_n \to x$ as $n \to \infty$

Cauchy and converging sequences

Normed space: vector space \mathcal{X} equipped with a norm, which is denoted by $(\mathcal{X}, \|\cdot\|)$.

Definition

Let $\mathcal{X} = (\mathcal{X}, \|\cdot\|)$ be a normed vector space.

A sequence $(x_n)=(x_n)_{n\in\mathbb{N}}$ in \mathcal{X} converges to a limit $x\in\mathcal{X}$ if

$$\forall \epsilon>0, \exists N_\epsilon \in \mathbb{N} \text{ such that } \|x-x_n\|<\epsilon \text{ for all } n>N_\epsilon$$

One then writes $x_n \to x$ or $x = \lim x_n$.

Likewise, (x_n) is a Cauchy sequence in $\mathcal X$ if

- 1) $x_n \in \mathcal{X}$ for all $n \in \mathbb{N}$
- 2) $\forall \epsilon > 0, \exists N_{\epsilon} \in \mathbb{N}$ such that $||x_m x_n|| < \epsilon$ for all $m, n > N_{\epsilon}$.
- The limits of converging and Cauchy sequences are unique
- If (x_n) converges in \mathcal{X} , then it is necessarily a Cauchy sequence
- If (x_n) converges or is Cauchy in \mathcal{X} , then it is bounded in the sense that $\sup_n \|x_n\| < \infty$
- The notion of Cauchy (resp., of a converging) sequence also exists for more general topologies;
 e.g., for a Fréchet space, which is equipped with a countable family of semi-norms.

M. Unser — EPFL

Normed/Banach spaces

Topological vector space (TVS): a vector space equipped with a topology (e.g., the normed space $(\mathcal{X}, \|\cdot\|)$).

Definition

A TVS \mathcal{X} is (sequentially) **complete** if the limit points of all Cauchy sequences (x_n) in \mathcal{X} are included in \mathcal{X} .

Important case: **Banach space** = complete normed space.

Properties

- Every finite-dimensional normed vector space is complete
- Every normed space $(\mathcal{X}, \|\cdot\|)$ has a **unique** (Banach) **completion**, which is denoted by $\overline{(\mathcal{X}, \|\cdot\|)}$.

(In essence, this amounts to augmenting $\mathcal X$ by adding the limit points of all Cauchy sequences to it.) Another way to put it: $(\mathcal X,\|\cdot\|)$ is isometrically and densely embedded in $\overline{(\mathcal X,\|\cdot\|)}$.

Some useful Banach spaces for engineers

■ Finite-dimensional vector spaces

$$(\mathbb{R}^N,\|\cdot\|_p)$$
 with $\|\mathbf{x}\|_p \stackrel{\triangle}{=} \left(\sum_{n=1}^N |x_n|^p\right)^{1/p}$ is a Banach space for $p=1,2.$

Function spaces

Space of continuous functions equipped with the sup norm: $\|f\|_{\sup} \stackrel{\triangle}{=} \sup_{t \in \mathbb{R}} |f(t)|$

$$C_{
m b}(\mathbb{R})=\left\{f ext{ continuous } \mathbb{R} o \mathbb{R}: \|f\|_{
m sup} <\infty
ight\}$$
 is a Banach space.

Lebesgue spaces (under implicit assumption of measurability):

$$L_p$$
-norm: $\|f\|_{L_p} \stackrel{ riangle}{=} \left(\int_{\mathbb{R}} |f(t)|^p \mathrm{d}t
ight)^{1/p}$

$$L_p(\mathbb{R})=\left\{f:\mathbb{R}\to\mathbb{R} \text{ s.t. } \|f\|_{L_p}<\infty\right\} \text{ is a Banach space for } p\in[1,\infty).$$

M. Unser — EPFL 1

Schwartz' functions

Motivation

Schwartz's functions (a.k.a. test functions) are extremely well-behaved so that you can manipulate them without further precaution: differentiation, multiplication by polynomials, integrations, and more are always valid.

Definition: A function $\varphi : \mathbb{R} \to \mathbb{R}$ is in Schwartz' class (i.e., $\varphi \in \mathcal{S}(\mathbb{R})$) if

lacksquare φ is infinitely differentiable

(smoothness)

$$orall t \in \mathbb{R}: \quad |\mathrm{D}^m\{arphi\}(t)| \leq C_{m,n} rac{1}{1+|t|^n} \qquad ext{(rapid decay)}$$

$$D^m = \frac{\mathrm{d}^m t}{\mathrm{d}t^m}$$

Examples

The standardized Gaussian $g_0(t)=\frac{1}{\sqrt{2\pi}}\mathrm{e}^{-|t|^2/2}\in\mathcal{S}(\mathbb{R})$ and, more generally, the Hermite functions $g_n(t)=\mathrm{D}^n\{g_0\}(t)$ for $n\in\mathbb{N}$.

Gauss-Hermite functions

Hermite functions: $g_n(t) = D^n\{g_0\}(t)$ for $n \in \mathbb{N}$ where g_0 is the standardized Gaussian

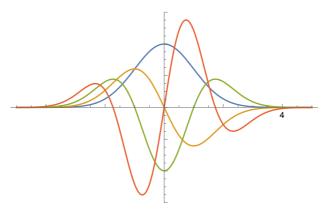
$$g_0(t) = \frac{1}{\sqrt{2\pi}} e^{-|t|^2/2}$$

$$g_1(t) = \frac{-t}{\sqrt{2\pi}} e^{-|t|^2/2}$$

$$g_2(t) = \frac{-1+t^2}{\sqrt{2\pi}} e^{-|t|^2/2}$$

$$g_3(t) = \frac{3t - t^3}{\sqrt{2\pi}} e^{-|t|^2/2}$$

...



M. Unser — EPFL

1.3

Schwartz' space of test functions

 $\mathcal{S}(\mathbb{R})$ is a Fréchet space = a **complete** TVS equipped with a **countable family of semi-norms**

 $lacksquare{\mathbb{Z}}(\mathbb{R})$: Schwartz' space of smooth and rapidly decreasing functions

Separating family of semi-norms:
$$\|\varphi\|_{m,n} = \sup_{t \in \mathbb{R}} \left| t^m \mathrm{D}^n \{\varphi\}(t) \right| \quad \text{ for all } m,n \in \mathbb{N}.$$

$$\textbf{Super strict} \text{ notion of convergence: } \lim_{i} \varphi_{i} = \varphi \quad \Leftrightarrow \quad \lim_{i} \|\varphi_{i} - \varphi\|_{m,n} = 0, \forall m,n \in \mathbb{N}$$

$$\mathcal{S}(\mathbb{R}) = \left\{ \varphi : \mathbb{R} \to \mathbb{R} \text{ (or } \mathbb{C}) \text{ such that } \|\varphi\|_{m,n} < \infty, \forall m,n \in \mathbb{N} \right\}$$

Why should we care about $\mathcal{S} = \mathcal{S}(\mathbb{R})$?

- Classical interpretation of functions. Convergence in $\mathcal S$ conforms with our perception of what a **strict equality** $\lim_i f_i = \varphi$ should be: the functions on either side as well as all their derivatives match at every location $t \in \mathbb R$.
- \blacksquare \mathcal{S} is small and yet large enough to represent any signal with an arbitrary degree of precision.
- $\begin{tabular}{l} \blacksquare & \mathcal{S} \text{ is dense in most of the classical function spaces of analysis.} \\ & \text{In particular, } L_1(\mathbb{R}) = \overline{(\mathcal{S}(\mathbb{R}), \|\cdot\|_{L_1})} \text{ and } L_2(\mathbb{R}) = \overline{(\mathcal{S}(\mathbb{R}), \|\cdot\|_{L_2})}. \\ \end{tabular}$
- \blacksquare $\mathcal S$ work beautifully with the **Fourier transform**: $\mathcal F$ bijectively maps $\mathcal S$ (complex version) into itself.

Linear operators: continuity property

Definition

An operator $A: \mathcal{X} \to \mathcal{Y}$, where \mathcal{X} and \mathcal{Y} , are vector spaces is *linear* if, for any $\varphi_1, \varphi_2 \in \mathcal{X}$ and $a_1, a_2 \in \mathbb{R}$ (or \mathbb{C}),

$$A\{a_1\varphi_1 + a_2\varphi_2\} = a_1A\{\varphi_1\} + a_2A\{\varphi_2\}$$

Definition

Let \mathcal{X},\mathcal{Y} be topological vector spaces. An operator $A:\mathcal{X}\to\mathcal{Y}$ is (sequentially) *continuous* (with respect to the topologies of \mathcal{X} and \mathcal{Y}) if, for any convergent sequence (φ_i) in \mathcal{X} with limit $\varphi\in\mathcal{X}$, the sequence $(A\{\varphi_i\})$ converges to $A\{\varphi\}$ in \mathcal{Y} ; i.e.,

$$\lim_{i} A\{\varphi_i\} = A\{\lim_{i} \varphi_i\}.$$

Example: The linear operator D^{m_0} is continuous $\mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$.

Schwartz' semi-norms: $\|\varphi\|_{m,n} \stackrel{\triangle}{=} \sup_{t \in \mathbb{R}} |t^m \mathrm{D}^n \{\varphi\}(t)|$ with $m, n \in \mathbb{N}$

$$\|\mathbf{D}^{m_0}\{\varphi_i\} - \mathbf{D}^{m_0}\{\varphi\}\|_{m,n} = \|\mathbf{D}^{m_0}\{\varphi_i - \varphi\}\|_{m,n} = \sup_{t \in \mathbb{R}} |t^m \mathbf{D}^{n+m_0}\{\varphi_i - \varphi\}(t)| = \|\varphi_i - \varphi\|_{m,n+m_0} \to 0$$

M. Unser — EPFL

Examples of continuous operators on $\mathcal{S}(\mathbb{R})$

 $\forall \varphi, \phi \in \mathcal{S}(\mathbb{R}) \text{ and } n_0, m_0 \in \mathbb{N}$

lacksquare n_0 -fold derivative $D^{n_0}: \mathcal{S}(\mathbb{R}^d) o \mathcal{S}(\mathbb{R}^d)$

$$D^{n_0}\{\varphi\}(t) = \frac{d^{n_0}}{dt^{n_0}}\varphi(t) \in \mathcal{S}(\mathbb{R})$$

■ Multiplication by a monomial of degree m_0 , $\mathrm{M}_{m_0}:\mathcal{S}(\mathbb{R})\to\mathcal{S}(\mathbb{R})$

$$M_{m_0}\{\varphi\}(t) = t^{m_0}\varphi(t) \in \mathcal{S}(\mathbb{R})$$

■ Shift by t_0 , $S_{t_0}: \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$

$$S_{t_0}\{\varphi\}(t) = \varphi(t - t_0) \in \mathcal{S}(\mathbb{R})$$

■ Fourier transform $\mathcal{F}: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$

$$\mathcal{F}\{\varphi\}(\omega) = \int_{\mathbb{D}} e^{-j\omega t} \varphi(t) dt = \hat{\varphi}(\omega) \in \mathcal{S}(\mathbb{R})$$

Different notions of equality for functions

■ Classical equality (strict)

Three forms are not equivalent ...

$$f(t) = g(t), \quad \forall t \in \mathbb{R}$$

Context: Functions should be continuous.

■ Eguality in the norm (or "almost everywhere")

$$||f - g||^2 = \int_{-\infty}^{+\infty} |f(t) - g(t)|^2 dt = 0 \qquad \Leftrightarrow \qquad f = g \quad a.e.$$

Context: Finite-energie functions, measure theory (Lebesgue, 1901)

■ Weak equality (or "in the sense of distributions")

$$\forall \phi \in \mathcal{S}, \quad \langle f, \phi \rangle = \langle g, \phi \rangle \qquad \Leftrightarrow \qquad f = g \quad \text{(in the sense of distributions)}$$

- Notation for "duality product": $\langle f, \phi \rangle = \int_{-\infty}^{+\infty} f(t)\phi(t) dt$
- \mathcal{S} : Schwartz's space of "test" functions (smooth with rapid decay)
- Context: Generalized fonctions, distribution theory (Schwartz, 1950)

 $C_{\mathrm{b}}(\mathbb{R})$ or $\mathcal{S}(\mathbb{R})$ (if one cares about derivatives)

degree of generality

 $L_2(\mathbb{R})$ and $L_1(\mathbb{R})$

with
$$L_p(\mathbb{R}) = \overline{(\mathcal{S}(\mathbb{R}), \|\cdot\|_{L_p})}, \ \ p = 1, 2$$

 $\mathcal{S}'(\mathbb{R})$ (space of distributions) with $\mathcal{S}(\mathbb{R}) \subset L_n(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$

M. Unser — EPFL 17

3. LINEAR FUNCTIONALS AND DUAL SPACE

- Linear functionals
- Continuous dual of a vector space
- Finite-dimensional scenario
- Adjoint operator

M. Unser — EPFL

18

Linear functionals

Context: \mathcal{X} is a complete topological vector space with some associated notion of sequential convergence; that is, if $(\varphi_i)_{i\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{X} , then $\lim_{i\to\infty}\varphi_i=\varphi\in\mathcal{X}$.

Definition

- A functional on a TVS $\mathcal X$ is a mapping $\varphi \mapsto f(\varphi)$ that associates the **real value** $f(\varphi)$ to any element $\varphi \in \mathcal X$.
- lacksquare The functional $f:\mathcal{X}
 ightarrow \mathbb{R}$ is **linear** if

$$f(a_1\varphi_1+a_2\ \varphi_2)=a_1f(\varphi_1)+a_2f(\varphi_2) \text{ for all } \varphi_1,\varphi_2\in\mathcal{X} \text{ and } a_1,a_2\in\mathbb{R} \text{ (or }\mathbb{C}).$$

■ The functional $f: \mathcal{X} \to \mathbb{R}$ is **continuous** if $\lim_i f(\varphi_i) = f(\lim_i \varphi_i) = f(\varphi)$ for any converging sequence (φ_i) in \mathcal{X} .

Proposition

A linear functional $f: \mathcal{X} \to \mathbb{R}, \varphi \mapsto f(\varphi) = \langle f, \varphi \rangle$ is **continuous** if and only if it is continuous at the origin where it takes the value 0.

$$\lim_{i} f(\varphi_{i}) = f(\lim_{i} \varphi_{i}) = f(\varphi) \Leftrightarrow \lim_{i} f(\varphi_{i} - \varphi) = f(0) = 0$$
 (by linearity)

M. Unser - EPFL

Continuous dual of a vector space

Context: \mathcal{X} is a complete topological vector space with some associated notion of sequential convergence; that is, if $(\varphi_i)_{i\in\mathbb{N}}$ is a Cauchy sequence in \mathcal{X} , then $\lim_{i\to\infty}\varphi_i=\varphi\in\mathcal{X}$.

Notation for a **linear functional** on \mathcal{X} . $f: \varphi \mapsto \langle f, \varphi \rangle$ with $\langle f, \varphi \rangle \in \mathbb{R}$

Observation: The set of all linear functionals on \mathcal{X} is a vector space denoted by \mathcal{X}^* (algebraic dual)

$$\langle a_1 f_1 + a_2 f_2, \varphi \rangle = a_1 \langle f_1, \varphi \rangle + a_2 \langle f_2, \varphi \rangle, \quad \forall a_1, a_2 \in \mathbb{R}$$

Likewise:

The set of all *continuous linear functionals* on \mathcal{X} is a vector space $\mathcal{X}' \subseteq \mathcal{X}^*$ \mathcal{X}' : topological or *continuous dual* of \mathcal{X}

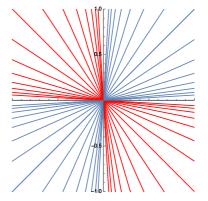
Scalar (or duality) product $\langle \cdot, \cdot \rangle$ is a bilinear functional: $\mathcal{X} \times \mathcal{X}' \to \mathbb{R}$ continuous in both arguments

■ Weak-st topology on \mathcal{X}' : (f_i) converges to f in \mathcal{X}'

$$\Leftrightarrow \lim_{i} \langle f_i, \varphi \rangle = \langle f, \varphi \rangle \text{ for all } \varphi \in \mathcal{X}$$

Most basic example: $(\mathbb{R}, |\cdot|)'$, which is isomorphic to $(\mathbb{R}, |\cdot|)$

- $lacksquare \mathcal{X} = \mathbb{R}$ as a complete normed vector space
 - Algebraic structure: $a_1x_1 + a_2x_2 \in \mathbb{R}$ for all $x_1, x_2 \in \mathcal{X}$ and $a_1, a_2 \in \mathbb{R}$
 - Norm: $x \mapsto |x|$ (the choice here is unique)
 - Completeness: \mathbb{R} is complete; i.e., all Cauchy sequences in \mathbb{R} have a limit in \mathbb{R} .



- lacksquare The linear functional on $\mathcal{X}=\mathbb{R}$
 - They are all of the form $f_i: x \mapsto \alpha_i x$ with $\alpha_i \in \mathbb{R}$
 - \blacksquare They are automatically continuous in the topology of $\mathbb R.$
 - Each of them is uniquely identified by an element of \mathbb{R} : $\alpha_i = f_i(1) = \mathrm{D} f_i(0) \in \mathbb{R}$

$$\Rightarrow$$
 $(\mathbb{R}, |\cdot|)'$ is isomorphic to $(\mathbb{R}, |\cdot|)$ (often written as $\mathbb{R}' = \mathbb{R}$)

M. Unser - EPFL 21

Finite-dimensional scenario

lacksquare Identification of linear functionals on $\mathcal{X}=\mathbb{R}^N$

$$f(\mathbf{x}): \mathbb{R}^N \to \mathbb{R}$$
 is a linear functional on \mathbb{R}^N

$$\Leftrightarrow f(a_1\mathbf{x}_1 + a_2\mathbf{x}_2) = a_1f(\mathbf{x}_1) + a_2f(\mathbf{x}_2)$$

$$\Leftrightarrow f(\mathbf{x}) = \mathbf{f}^T \mathbf{x} = \langle \mathbf{f}, \mathbf{x} \rangle$$
 for some $\mathbf{f} \in \mathbb{R}^N$

$$orall \mathbf{x}, \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^N \ \ ext{and} \ orall a_1, a_2 \in \mathbb{R}$$

Association between
$$f: \mathbb{R}^N \to \mathbb{R}$$

and
$$\mathbf{f} = (f_n) \in \mathbb{R}^N$$
 is one-to-one with $f_n = f(\mathbf{e}_n)$

or, alternatively,
$$\mathbf{f} = \nabla f(\mathbf{0})$$
 (slope)

lacksquare Topological consideration for $\mathcal{X} = (\mathbb{R}^N, \|\cdot\|_2)$ (Euclidean space)

$$\text{Continuity:} \quad |f(\mathbf{x}_i) - f(\mathbf{x}_j)| = |f(\mathbf{x}_i - \mathbf{x}_j)| = |\langle \mathbf{f}, \mathbf{x}_i - \mathbf{x}_j \rangle| \leq \|\mathbf{f}\|_2 \ \|\mathbf{x}_i - \mathbf{x}_j\|_2 \quad \text{(Cauchy-Schwarz)}$$

Proposition

The set of all continuous linear functionals on \mathbb{R}^N is a vector space $(\mathbb{R}^N)'$ isomorphic to \mathbb{R}^N

$$\langle a_1 \mathbf{f}_1 + a_2 \mathbf{f}_2, \mathbf{x} \rangle = a_1 \langle \mathbf{f}_1, \mathbf{x} \rangle + a_2 \langle \mathbf{f}_2, \mathbf{x} \rangle$$

Adjoint operator

Let $\mathcal X$ be a complete topological vector space with continuous dual $\mathcal X'$.

Duality pairing: $(f, \varphi) \mapsto \langle f, \varphi \rangle_{\mathcal{X}' \times \mathcal{X}} = \langle f, \varphi \rangle$ (for short)

■ Adjoint of a linear operator $A: \mathcal{X} \to \mathcal{X}$

Theorem

If A is a continuous linear operator on \mathcal{X} , then there exists a unique continuous linear operator $A^*: \mathcal{X}' \to \mathcal{X}'$ (the adjoint of A) such that, for all $(f, \varphi) \in \mathcal{X}' \times \mathcal{X}$,

$$\langle f, A\{\varphi\} \rangle = \langle A^*\{f\}, \varphi \rangle$$
.

Finite-dimensional scenario : $\mathcal{X} = (\mathbb{R}^N, \|\cdot\|_2)$

$$\mathbf{A}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x}$$
 with $\mathbf{A} \in \mathbb{R}^{N \times N}$
 $\mathbf{A}^*: \mathbf{y} \mapsto \mathbf{A}^T\mathbf{y}$ (transpose)

Indeed,
$$\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^N : \langle \mathbf{y}, \mathbf{A} \mathbf{x} \rangle = \mathbf{y}^T \mathbf{A} \mathbf{x} = (\mathbf{A}^T \mathbf{y})^T \mathbf{x} = \langle \mathbf{A}^T \mathbf{y}, \mathbf{x} \rangle$$

M. Unser – EPFL 23

4. DISTRIBUTIONS

- Mathematical notion of distribution
- Examples of distributions
- Schwartz space of tempered distrubutions
- Operations on distributions
- Examples of calculations
- Conclusion

What is a distribution (a.k.a. generalized function)?

It is a *continuous linear functional* on $\mathcal{S}(\mathbb{R})$

 $f \in \mathcal{S}'(\mathbb{R})$: Schwartz' space of tempered distributions

It is a rule $\mathcal{S}(\mathbb{R}^d) \to \mathbb{R}$ that associates a real number $\langle \varphi, f \rangle$ to every test function φ

Example:
$$\langle \delta(\cdot - t_0), \varphi \rangle = \varphi(t_0)$$

It is an extension of the classical notion of function.

If
$$f$$
 is (slowly increasing and) locally integrable, then $\langle \varphi, f \rangle = \int_{\mathbb{R}} f(t) \varphi(t) \mathrm{d}t$

Otherwise, when f cannot be identified as a function, the "integral" notation $\int_{\mathbb{D}} f(t)\varphi(t)\mathrm{d}t = \langle f, \varphi \rangle$ is **only formal**

Example:
$$\int_{\mathbb{D}} \varphi(t) \delta(t-t_0) \mathrm{d}t = \varphi(t_0)$$
 (sampling property of Dirac)

M. Unser — EPFL 25

Examples of distributions

Specification of a distribution $f: \varphi \mapsto \langle f, \varphi \rangle$

Properties to check

- 1. Linearity: $\langle f, a_1\varphi_1 + a_2\varphi_2 \rangle = a_1\langle f, \varphi_1 \rangle + a_2\langle f, \varphi_2 \rangle$ for all $a_1, a_2 \in \mathbb{R}$ and $\varphi_1, \varphi_2 \in \mathcal{S}$
- 2. Continuity: $\lim_i \langle f, \varphi_i \rangle = \langle f, \lim_i \varphi_i \rangle = 0$ for any sequence (φ_i) in \mathcal{S} that converges to 0.

N.B.: $\varphi_i \to 0$ in \mathcal{S} is equivalent to $\|\varphi_i\|_{m,n} \stackrel{\Delta}{=} \sup_{t \in \mathbb{R}} |t^m \mathrm{D}^n \{\varphi_i\}(t)| \to 0$ for all $m, n \in \mathbb{N}$

Shifted Dirac impulse

$$\delta(\cdot - t_0) : \varphi \mapsto \langle \delta(\cdot - t_0), \varphi \rangle \stackrel{\triangle}{=} \varphi(t_0)$$

Linearity: obvious

Continuity: $|\langle \delta(\cdot - t_0), \varphi \rangle| \leq ||\varphi||_{0,0}$

Absolutely-integrable function

$$f:\varphi\mapsto \langle f,\varphi\rangle \stackrel{\triangle}{=} \int_{\mathbb{R}} f(t)\varphi(t)\mathrm{d}t \quad \text{ with } \int_{\mathbb{R}} |f(t)|\mathrm{d}t = \|f\|_{L_1} < \infty$$

Continuity: $|\langle f, \varphi \rangle| \leq ||f||_{L_1} ||\varphi||_{0,0}$

Functions with no-faster-than-algebraic growth

$$\exists m_0 \text{ such } \int_{\mathbb{R}} |f(t)| (1+|t|)^{-m_0} \mathrm{d}t = \|f\|_{L_1,-m_0} < \infty$$

Continuity: $|\langle f, \varphi \rangle| \leq C ||f||_{L_1, -m_0} ||\varphi||_{m_0, 0}$

Schwartz' space $S'(\mathbb{R})$ of tempered distributions

 $\mathcal{S}'(\mathbb{R})$ is the topological dual of $\mathcal{S}(\mathbb{R})$, which is itself a *nuclear* Fréchet space*.

This implies that $\mathcal{S}'(\mathbb{R})$ is also a *nuclear space*, which fully justifies the use of the weak topology.

: A nuclear space is a TVS with the remarkable property that strong and weak=weak- convergence are equivalent.

■ Convergence in $\mathcal{S}'(\mathbb{R})$

 $\mathcal{S}' = \mathcal{S}'(\mathbb{R})$ equipped with the weak topology is complete.

A sequence $(f_n) = (f_n)_{n \in \mathbb{N}}$ of distributions in \mathcal{S}' converges to a limit $f \in \mathcal{S}'$ if

$$\forall \varphi \in \mathcal{S} : \lim_{n \to \infty} \langle f_n, \varphi \rangle = \langle \lim_{n \to \infty} f_n, \varphi \rangle = \langle f, \varphi \rangle$$

Example

Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that $||f||_{L_1} < \infty$.

Then,
$$f_n(t)=\sum_{k=-n^2}^{n^2}f(\frac{k}{n})\delta(t-\frac{k}{n})\frac{1}{n}$$
 converges to f in \mathcal{S}' as $n\to\infty$.

M. Unser — EPFL 27

Further examples of weak convergence

Convergence in the sense of distributions: $\lim_{n \to \infty} f_n = f$ in $\mathcal{S}' \Leftrightarrow \forall \varphi \in \mathcal{S} : \lim_{n \to \infty} \langle f_n, \varphi \rangle = \langle f, \varphi \rangle$

Construction of Dirac impulse

The functions $f_n(t) = n \operatorname{rect}(nt)$ converge to δ in S' as $n \to \infty$.

$$\blacksquare$$
 Unit integral: $\int_{\mathbb{R}} f_n(t) = 1$ for all $n \in \mathbb{N}$

$$\lim_{n \to \infty} \langle f_n, \varphi \rangle = \lim_{n \to \infty} \int_{\mathbb{R}} f_n(t) \varphi(t) dt = \lim_{n \to \infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \varphi\left(\frac{\tau}{n}\right) d\tau = \int_{-\frac{1}{2}}^{\frac{1}{2}} \lim_{n \to \infty} \varphi\left(\frac{\tau}{n}\right) d\tau = \varphi(0)$$

The argument caries through for any $g:\mathbb{R}\to\mathbb{R}$ that is continuous at t=0 with $\int_{\mathbb{R}}g(t)\mathrm{d}t=1$.

Remark: While $f_n \in L_1(\mathbb{R})$ with $||f||_{L_1} = 1$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} f_n = \delta \notin L_1(\mathbb{R})$ because (f_n) fails to be a Cauchy sequence in $L_1(\mathbb{R})$. In other words, δ cannot be identified as a function.

Operations on distributions

Dual extension principle

Let $\mathrm{U},\mathrm{U}^*:\mathcal{S}(\mathbb{R})\to\mathcal{S}(\mathbb{R})$ be two operators that form an adjoint pair on $\mathcal{S}(\mathbb{R})\times\mathcal{S}(\mathbb{R})$. Their action to $\mathcal{S}'(\mathbb{R})\to\mathcal{S}'(\mathbb{R})$ is extended by defining $\mathrm{U}\{f\}$ and $\mathrm{U}^*\{f\}$ such that $\langle\mathrm{U}\{f\},\varphi\rangle=\langle f,\mathrm{U}^*\{\varphi\}\rangle$, $\langle\mathrm{U}^*\{f\},\varphi,\rangle=\langle f,\mathrm{U}\{\varphi\}\rangle$.

- Examples of definition of operations on distributions
 - $\text{ Shift by } t_0 \in \mathbb{R} \colon \quad \langle f(\cdot t_0), \varphi \rangle \stackrel{\triangle}{=} \langle f, \varphi(\cdot + t_0) \rangle$
 - nth-order derivative: $\langle D^n \{ f \}, \varphi \rangle \stackrel{\triangle}{=} (-1)^n \langle f, D^n \{ \varphi \} \rangle$
 - $\qquad \text{Multiplication by monomial:} \qquad \langle \mathcal{M}_{m_0}\{f\}, \varphi \rangle \stackrel{\triangle}{=} \langle f, \mathcal{M}_{m_0}\{\varphi\} \rangle \stackrel{\triangle}{=} \langle f, (\cdot)^{m_0} \varphi \rangle$
 - Convolution: $\langle h * f, \varphi \rangle \stackrel{\triangle}{=} \langle f, h^{\vee} * \varphi \rangle$ with $h \in \mathcal{S}(\mathbb{R})$ and $h^{\vee}(t) = h(-t)$
 - Fourier transform: $\langle \mathcal{F}\{f\}, \hat{\varphi} \rangle \stackrel{\triangle}{=} \langle f, \mathcal{F}^*\{\hat{\varphi}\} \rangle = 2\pi \langle f, \varphi \rangle$ for all $\hat{\varphi} \in \mathcal{S}(\mathbb{R})$

M. Unser — EPFL 29

Justification: Continuity and adjoint relations on $\mathcal{S}(\mathbb{R})$

 $\forall \varphi, \phi \in \mathcal{S}(\mathbb{R}) \text{ and } n_0, m_0 \in \mathbb{N}$

■ n_0 -fold derivative $D^{n_0}: \mathcal{S}(\mathbb{R}^d) \to \mathcal{S}(\mathbb{R}^d)$

$$D^{n_0}\{\varphi\}(t) = \frac{d^{n_0}}{dt^{n_0}}\varphi(t) \in \mathcal{S}(\mathbb{R})$$

Adjoint relation: $(D^{n_0})^* = (-1)^{n_0}D^{n_0}$; i.e., $\langle D^{n_0}\{\varphi\}, \phi\rangle = (-1)^{n_0}\langle \varphi, D^{n_0}\{\phi\}\rangle$ (integration by part)

■ Multiplication by a monomial of degree $m_0 \in \mathbb{N}, \ \mathrm{M}_{m_0} : \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$

$$M_{m_0}\{\varphi\}(t) = t^{m_0}\varphi(t) \in \mathcal{S}(\mathbb{R})$$

 $\text{Adjoint relation:} \quad \mathbf{M}_{m_0}^* = \mathbf{M}_{m_0} \quad \Leftrightarrow \quad \langle \mathbf{M}_{m_0}\{\varphi\}, \phi\rangle = \langle \varphi, \mathbf{M}_{m_0}\{\phi\}\rangle$

■ Fourier transform $\mathcal{F}: \mathcal{S}(\mathbb{R}^d) o \mathcal{S}(\mathbb{R}^d)$

$$\mathcal{F}\{\varphi\}(\omega) = \int_{\mathbb{R}} e^{-j\omega t} \varphi(t) dt = \hat{\varphi}(\omega) \in \mathcal{S}(\mathbb{R})$$

Adjoint relation $\mathcal{F}^*=(2\pi)\mathcal{F}^{-1}$ (Parseval) with $\mathcal{F}^{-1}:\mathcal{S}(\mathbb{R})\to\mathcal{S}(\mathbb{R})$

Examples of calculations

- Differentiation: $\langle \mathrm{D}\{f\}, \varphi \rangle \stackrel{\triangle}{=} -\langle f, \mathrm{D}\{\varphi\} \rangle$ for all $\varphi \in \mathcal{S}(\mathbb{R})$

 - $\ \ \mathbb{D}\{u\}=\delta.$

Indeed:
$$\langle \mathrm{D}\{u\}, \varphi \rangle = -\langle u, \mathrm{D}\{\varphi\} \rangle = -\int_0^{+\infty} \varphi'(t) \mathrm{d}t = \varphi(0) - \varphi(\infty) = \varphi(0)$$

- Convolution with $h \in \mathcal{S}$: $\langle f * h, \varphi \rangle \triangleq \langle f, h^{\vee} * \varphi \rangle$ for all $\varphi \in \mathcal{S}(\mathbb{R})$
 - $\delta * h = h$

$$\forall \varphi \in \mathcal{S} : \langle \delta * h, \varphi \rangle = \langle \delta, h^{\vee} * \varphi \rangle = h^{\vee} * \varphi(0) = \langle h, \varphi \rangle$$

$$\delta' * h = \mathrm{D}\{h\} = h'$$

M. Unser — EPFL 31

Conclusion: Advantages of working with $S'(\mathbb{R})$

- Direct analogy with linear algebra
 - Fundamental elements (not included in $L_2(\mathbb{R})$ = classical Hilbert space): (i) $\delta(\cdot - t_0) \in \mathcal{S}'(\mathbb{R})$ (continuous-domain analog of canonical basis), (ii) $\mathrm{e}^{-\mathrm{j}\omega_0 \cdot} \in \mathcal{S}'(\mathbb{R})$ (eigenfunctions of LSI operators)

■ Schwartz' kernel theorem:

Every linear operator is characterized by its generalized impulse response (analog of bi-infinite matrix)

- Rigorous extensions of basic signal processing operators
 - Weak derivative(s), which may produce Dirac impulses
 - Generalized Fourier transform, which may not have an explicit representation as a "classical Fourier integral"
 - Multiplication with smooth, slowly-increasing functions (e.g. modulation, multiplication with monomial) (These operations are not necessarily valid in the classical sense for ordinary (e.g. piecewise continuous) functions $f: \mathbb{R} \to \mathbb{R}$)
- Largest mathematical framework that supports use of the Fourier transform
 - lacksquare $\mathcal{F}: \mathcal{S}'(\mathbb{R}) o \mathcal{S}'(\mathbb{R})$ (continuous bijection)
 - Distributional calculus is self-consistent ("tous les coups, ou presque, sont permis")
 Liberal use of properties in Tables (without worrying about underlying mathematical hypotheses).

Summary: infinite-dimensional extension of linear algebra

Vector algebra

Functional counterpart

$$\mathbf{x} = (x_1, \cdots, x_N)$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{n=1}^{N} x_n y_n$$

$$\langle f, arphi
angle = \int_{\mathbb{R}} f(t) arphi(t) \mathrm{d}t$$
 (duality product)

 \mathbf{e}_n (canonical basis)

Shifts of the Dirac distribution: $\delta(\cdot - \tau) \in \mathcal{S}'(\mathbb{R})$

$$y = Ax$$

$$\mathbf{A}\{f\}(t) = \int_{\mathbb{R}} a(t,\tau)f(t)d\tau$$

Transpose of a matrix: \mathbf{A}^T

Adjoint operator: $\mathbf{A}^*\{f\}(t) = \int_{\mathbb{R}} a(\tau,t) f(t) \mathrm{d} \tau$